8 research outputs found

    Clinical spectrum of SIX3-associated mutations in holoprosencephaly: correlation between genotype, phenotype and function

    Get PDF
    BACKGROUND: Holoprosencephaly (HPE) is the most common structural malformation of the human forebrain. There are several important HPE mutational target genes, including the transcription factor SIX3, which encodes an early regulator of Shh, Wnt, Bmp and Nodal signalling expressed in the developing forebrain and eyes of all vertebrates. OBJECTIVE: To characterise genetic and clinical findings in patients with SIX3 mutations. METHODS: Patients with HPE and their family members were tested for mutations in HPE-associated genes and the genetic and clinical findings, including those for additional cases found in the literature, were analysed. The results were correlated with a mutation-specific functional assay in zebrafish. RESULTS: In a cohort of patients (n = 800) with HPE, SIX3 mutations were found in 4.7% of probands and additional cases were found through testing of relatives. In total, 138 cases of HPE were identified, 59 of whom had not previously been clinically presented. Mutations in SIX3 result in more severe HPE than in other cases of non-chromosomal, non-syndromic HPE. An over-representation of severe HPE was found in patients whose mutations confer greater loss of function, as measured by the functional zebrafish assay. The gender ratio in this combined set of patients was 1.5:1 (F:M) and maternal inheritance was almost twice as common as paternal. About 14% of SIX3 mutations in probands occur de novo. There is a wide intrafamilial clinical range of features and classical penetrance is estimated to be at least 62%. CONCLUSIONS: Our data suggest that SIX3 mutations result in relatively severe HPE and that there is a genotype-phenotype correlation, as shown by functional studies using animal models

    Loss-of-function mutations in <em>SLC30A8</em> protect against type 2 diabetes.

    No full text
    Loss-of-function mutations protective against human disease provide in vivo validation of therapeutic targets, but none have yet been described for type 2 diabetes (T2D). Through sequencing or genotyping of ~150,000 individuals across 5 ancestry groups, we identified 12 rare protein-truncating variants in SLC30A8, which encodes an islet zinc transporter (ZnT8) and harbors a common variant (p.Trp325Arg) associated with T2D risk and glucose and proinsulin levels. Collectively, carriers of protein-truncating variants had 65% reduced T2D risk (P = 1.7 &times; 10(-6)), and non-diabetic Icelandic carriers of a frameshift variant (p.Lys34Serfs*50) demonstrated reduced glucose levels (-0.17 s.d., P = 4.6 &times; 10(-4)). The two most common protein-truncating variants (p.Arg138* and p.Lys34Serfs*50) individually associate with T2D protection and encode unstable ZnT8 proteins. Previous functional study of SLC30A8 suggested that reduced zinc transport increases T2D risk, and phenotypic heterogeneity was observed in mouse Slc30a8 knockouts. In contrast, loss-of-function mutations in humans provide strong evidence that SLC30A8 haploinsufficiency protects against T2D, suggesting ZnT8 inhibition as a therapeutic strategy in T2D prevention

    Genome-wide association meta-analysis of childhood and adolescent internalising symptoms.

    Get PDF
    OBJECTIVE: To investigate the genetic architecture of internalizing symptoms in childhood and adolescence. METHOD: In 22 cohorts, multiple univariate genome-wide association studies (GWASs) were performed using repeated assessments of internalizing symptoms, in a total of 64,561 children and adolescents between 3 and 18 years of age. Results were aggregated in meta-analyses that accounted for sample overlap, first using all available data, and then using subsets of measurements grouped by rater, age, and instrument. RESULTS: The meta-analysis of overall internalizing symptoms (INToverall) detected no genome-wide significant hits and showed low single nucleotide polymorphism (SNP) heritability (1.66%, 95% CI&nbsp;= 0.84-2.48%, neffective&nbsp;= 132,260). Stratified analyses indicated rater-based heterogeneity in genetic effects, with self-reported internalizing symptoms showing the highest heritability (5.63%, 95% CI&nbsp;= 3.08%-8.18%). The contribution of additive genetic effects on internalizing symptoms appeared to be stable over age, with overlapping estimates of SNP heritability from early childhood to adolescence. Genetic correlations were observed with adult anxiety, depression, and the well-being spectrum (rg&gt; 0.70), as well as with insomnia, loneliness, attention-deficit/hyperactivity disorder, autism, and childhood aggression (rangerg&nbsp;= 0.42-0.60), whereas there were no robust associations with schizophrenia, bipolar disorder, obsessive-compulsive disorder, or anorexia nervosa. CONCLUSION: Genetic correlations indicate that childhood and adolescent internalizing symptoms share substantial genetic vulnerabilities with adult internalizing disorders and other childhood psychiatric traits, which could partially explain both the persistence of internalizing symptoms over time and the high comorbidity among childhood psychiatric traits. Reducing phenotypic heterogeneity in childhood samples will be key in paving the way to future GWAS success

    Lipoprotein(a) concentration and the risk of coronary heart disease, stroke, and nonvascular mortality

    No full text
    Context Circulating concentration of lipoprotein(a) (Lp[a]), a large glycoprotein attached to a low-density lipoprotein–like particle, may be associated with risk of coronary heart disease (CHD) and stroke. Objective To assess the relationship of Lp(a) concentration with risk of major vascular and nonvascular outcomes. Study Selection Long-term prospective studies that recorded Lp(a) concentration and subsequent major vascular morbidity and/or cause-specific mortality published between January 1970 and March 2009 were identified through electronic searches of MEDLINE and other databases, manual searches of reference lists, and discussion with collaborators. Data Extraction Individual records were provided for each of 126 634 participants in 36 prospective studies. During 1.3 million person-years of follow-up, 22 076 firstever fatal or nonfatal vascular disease outcomes or nonvascular deaths were recorded, including 9336 CHD outcomes, 1903 ischemic strokes, 338 hemorrhagic strokes, 751 unclassified strokes, 1091 other vascular deaths, 8114 nonvascular deaths, and 242 deaths of unknown cause. Within-study regression analyses were adjusted for within-person variation and combined using meta-analysis. Analyses excluded participants with known preexisting CHD or stroke at baseline. Data Synthesis Lipoprotein(a) concentration was weakly correlated with several conventional vascular risk factors and it was highly consistent within individuals over several years. Associations of Lp(a) with CHD risk were broadly continuous in shape. In the 24 cohort studies, the rates of CHD in the top and bottom thirds of baseline Lp(a) distributions, respectively, were 5.6 (95% confidence interval [CI], 5.4-5.9) per 1000 personyears and 4.4 (95% CI, 4.2-4.6) per 1000 person-years. The risk ratio for CHD, adjusted for age and sex only, was 1.16 (95% CI, 1.11-1.22) per 3.5-fold higher usual Lp(a) concentration (ie, per 1 SD), and it was 1.13 (95% CI, 1.09-1.18) following further adjustment for lipids and other conventional risk factors. The corresponding adjusted risk ratios were 1.10 (95% CI, 1.02-1.18) for ischemic stroke, 1.01 (95% CI, 0.98-1.05) for the aggregate of nonvascular mortality, 1.00 (95% CI, 0.97-1.04) for cancer deaths, and 1.00 (95% CI, 0.95-1.06) for nonvascular deaths other than cancer. Conclusion Under a wide range of circumstances, there are continuous, independent, and modest associations of Lp(a) concentration with risk of CHD and stroke that appear exclusive to vascular outcomes. ©2009 American Medical Association. All rights reserved
    corecore